192 research outputs found

    Development of a biosensor for fast point-of-care blood analysis of Troponin

    Get PDF
    We present the development of novel tetrapolar EIS biosensor for the detect of troponin. Troponin has considerable diagnostic power and provide invaluable prognostic information for risk stratification. of acute coronary syndromes. Clinical Relevance— A feasibility study was undertaken to assess the diagnostic performance of serial cardiac troponin measurements which is excellent as these structural proteins are unique to the heart and thus sensitive and specific of damage to the myocardium. clinical molecular diagnostics and home healthcare. Troponin’s biosensors would provide point-of-care and rapid decision making for the early detection of CS. Clinically relevant window of cTnI testing, concentrations from 10pM to 0.1μM were achieved

    Towards a system for tracking drug delivery using frequency excited gold nanoparticles

    Get PDF
    Nanoparticle-based drugs are rapidly evolving to treat different conditions and have considerable potential. A new system based on the combination of electrical impedance tomography (EIT) imaging and a power amplifier with a RF coil has been developed to study the effect of gold nanoparticles (AuNPs) when excited in the MHz frequency range. We show that samples including AuNPs have a temperature increase of 1−1.5 °C due to the presence of RF excitation at 13.56 MHz which provides a higher rate of change for solutions without AuNPs. They also show more than a 50% increase in conductivity in difference imaging as the result of this excitation. The change for samples without AuNPs is 40%

    Towards a System for Tracking Drug Delivery Using Frequency Excited Gold Nanoparticles

    Get PDF
    Nanoparticle-based drugs are rapidly evolving to treat different conditions and have considerable potential. A new system based on the combination of electrical impedance tomography (EIT) imaging and a power amplifier with a RF coil has been developed to study the effect of gold nanoparticles (AuNPs) when excited in the MHz frequency range. We show that samples including AuNPs have a temperature increase of 1–1.5 ◦C due to the presence of RF excitation at 13.56 MHz which provides a higher rate of change for solutions without AuNPs. They also show more than a 50% increase in conductivity in difference imaging as the result of this excitation. The change for samples without AuNPs is 40%

    Nanoparticle electrical impedance tomography

    Get PDF
    We have developed a new approach to imaging with electrical impedance tomography (EIT) using gold nanoparticles (AuNPs) to enhance impedance changes at targeted tissue sites. This is achieved using radio frequency (RF) to heat nanoparticles while applying EIT imaging. The initial results using 5-nm citrate coated AuNPs show that heating can enhance the impedance in a solution containing AuNPs due to the application of an RF field at 2.60 GHz
    corecore